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Abstract—This paper investigates the potential of floating gate
field-effect transistors (FETs) as primitives for subthreshold com-
putation in analog neural networks. By leveraging the inherent
properties of these transistors, we demonstrate their suitability
for constructing neural network activation functions, such as
sigmoid and rectified linear units (ReLUs), as well as winner-
take-all (WTA) circuits for softmax activation. Our end-to-
end analog implementation successfully classifies the concentric
circles problem, illustrating the advantages of maintaining an
analog signal chain throughout the process.

Index Terms—Analog computing, Analog neural networks,
Computing-in-memory

I. THE ARGUMENT FOR ANALOG

As the need for computational complexity in deep neural
networks intensifies, especially for edge computing devices,
the field of analog computing has witnessed a renewed
interest. Emerging devices have demonstrated efficient in-
memory computing crossbar networks with floating gate field-
effect transistors (FG FETs) being among the first devices
investigated for these applications [1]. While contemporary
approaches have exhibited fully analog-mode crossbars for
vector matrix multiplication, end-to-end analog hardware im-
plementations from input to classification remain rare. Results
are frequently reported based on software simulations, which
can overestimate hardware performance due to optimistic
modeling of non-idealities. This paper addresses this gap by
presenting a fully implemented and measured analog neural
network, leveraging the energy efficiency of the analog domain
without limitations imposed by digital or mixed-signal devices
at the crossbar’s periphery.

Our method utilizes FG FETs available on an in-
house system-on-chip (SoC) field programmable analog array
(FPAA), a versatile reconfigurable computing platform. This
platform allows for arbitrary analog circuit experimentation
and provides >12-bit precision synaptic weights [2]. Section
II explores the computation primitives, followed by the intro-
duction of analog activation circuits and their measured data in
Section III. Section IV discusses the implementation of two
integrated neural networks classifying the concentric circles
problem using a sigmoid and Rectified Linear Unit (ReLU)
activation function, while Section V concludes the discussion.
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Fig. 1: Most neural network architectures share the same
primitives of matrix multiplication and neuron activation. A
fully analog signal chain allows the implementation to retain
the majority of the computing efficiency as opposed to paying
the cost overhead of an analog matrix crossbar with mixed
signal neuron activation.

II. COMPUTATION PRIMITIVES

Floating gate (FG) transistors have since been known as
powerful primitives in the design of vector matrix multiplier
(VMM) crossbar arrays [1], providing an innovative solution
to some of the most pressing challenges in modern computing.
At the heart of their functionality lies the ability to store
non-volatile charge, which corresponds to the weights of the
neural network (Fig. 2a). This feature not only ensures stability
but also enables them to operate in the subthreshold regime,
thereby significantly reducing power consumption compared
to traditional digital devices. To further understand the advan-
tages of utilizing floating gate transistors in this context, it is
essential to examine the EKV model [3], [4], which sheds light
on the exponential multiplication between the gate voltage and
source voltage in subthreshold p-type MOSFETs, given that
other variables are held relatively constant and the transistor
is in saturation (eq 1). Here, Ut is thermal voltage, κ is the
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Fig. 2: (a) Synaptic weights can be mapped to charge stored at the floating gate node of FG FETs. This is the basis of
in-memory computing. When placed in a crossbar, it forms a vector matrix multiplication circuit with voltage input and current
computation. (b) A sigmoid function can be achieved with a differential pair found in an OTA. The additional transistors set
the rails which are required to interface with subsequent source-input crossbars. (c) A ReLU analog circuit has its threshold
current set by the bias FET and linearly increases output voltages for currents above that value. (d) A two input Winner Take
All Network. The graphs show each individual input winning in isolation as well as the larger current winning in simultaneous
operation.

coupling from gate voltage to surface potential of the channel
ψ.

Is = Ithe
(κ(Vdd−Vfg−Vg−Vth)−(Vdd−Vs))/Ut

Is ≈ Ithe
Vfg ∗ eVdd−Vs

(1)

Building upon the merits of FG transistors in VMM cross-
bar arrays, it is crucial to address the practical aspects of
computation and communication within the system. Although
the core computation is executed in the current domain, it is
advantageous to convert the resulting currents to voltages for
communication purposes. This is primarily because voltages
offer a more efficient means of broadcasting signals across the
network, ensuring lower power dissipation and higher signal
integrity. Typically, this current-to-voltage conversion takes
place at the activation function stage, where the output currents
are transformed into corresponding voltage values.

III. ANALOG ACTIVATION FUNCTIONS

Having explored the matrix multiplication aspect of vector
matrix multiplier crossbar arrays, it is essential to delve into
the fundamental activation functions that play a pivotal role
in the functionality of neural networks. The three primary ac-
tivation functions – Sigmoid/tanh (hyperbolic tangent), ReLU

(Rectified Linear Unit), and softmax – serve as building blocks
for a wide range of neural network architectures. By designing
these activation functions as continuous-value programmable
analog circuits, we can achieve high efficiency and seamless
integration with the crossbar arrays of subsequent layers.

1) Sigmoid: The primary distinction between a sigmoid
function and a tanh function lies in their output range; while
the tanh function yields outputs between -1 and 1, the sig-
moid function generates strictly positive values. To minimize
hardware complexity, the sigmoid function was chosen for
implementation. As depicted in Fig 2b, the differential input of
an Operational Transconductance Amplifier (OTA) facilitates
the creation of exponential swings between two voltage rails.
The bias of the OTA is governed by an FG FET, which is
programmed to produce sufficient current to elevate the output
node to the upper rail. Conversely, the lower rail is determined
by the FG FET acting as an external bias for the circuit. By
carefully balancing the current provided by the FET with the
current sunk by the OTA, the lower rail can be adjusted to
align with the designer’s intent. Finally, the resulting current is
converted to voltage across a diode-connected p-type FET. The
voltage rails are important because these activation functions
feed the subsequent crossbar layer which is the source input
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Fig. 3: Measured analog decision boundaries (hyperplanes) of individual neurons and how they compare to their digital
counterparts for both a sigmoid and ReLU activation network

of an FG pfet. The output must fall within the active region
and tunable rails allow that to happen.

2) Rectified Linear Unit (ReLU): The ReLU circuit oper-
ates on a concept similar to the sigmoid function, but without
the need for an OTA. Instead, an external FG p-type FET
establishes a programmable threshold current. Consequently,
any current below this threshold leads to an insignificant shift
in the output voltage (Fig 2c). When the summation from
the VMM row surpasses this threshold, the excess current
is linearly converted to voltage across the diode-connected
p-type FET. For the differential operation of the circuit, a
negative row connecting to the same column vector input
feeds a current mirror that will uphold kirchoffs current law
(KCL) and subtract that amount of current from the total.
This straightforward mechanism enables the ReLU function to
effectively introduce nonlinearity into the neural network while
maintaining low hardware complexity and power consumption.

3) Winner-Take-All (WTA) as Softmax: The WTA circuit,
originally introduced by Lazzaro [5], aimed to approximate the
lateral inhibition observed in neurons, wherein the firing of a
specific neuron suppresses the activity of surrounding neurons.
This behavior is well-suited for the softmax operation, which

involves an exponential function applied to a set of input
values, divided by the sum of the exponentials. Softmax serves
to amplify the differences between inputs and normalize them
to a consistent range. The circuit shown in Fig 2d is a slightly
modified version of Lazzaro’s original WTA circuit, retaining
a similar functionality by converting input currents to gate
voltages in the differential pair. The lower bias is programmed
to sink just enough current for a single branch, ensuring that
the stronger input captures the majority of the current and
causes the output voltage to drop. This phenomenon can be
observed in Figure 2d; when both inputs are high, the output
voltage of the higher input current decreases significantly. This
circuit can be extended to N-outputs by simply stacking the
branches in parallel. A digital interface is easily integrated by
placing an inverter at the output of the branch for a sharper
decision boundary.

IV. NEURAL NETWORK INTEGRATION

To demonstrate the capabilities of our hardware, we selected
the well-known concentric circles classification problem and
trained two neural networks to tackle the task. Fig. 3 presents
a side-by-side comparison of the computed digital decision
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Fig. 4: Shows a linear layer with a sigmoid/ReLU activation feeding another linear layer with a winner-take-all circuit for
classification in the left column. The digitally trained implementation is in the middle and measured analog decision

boundaries on the right.

boundaries implemented by each individual neuron and their
corresponding measured analog counterparts. The ReLU im-
plementation was relatively straightforward and necessitated a
shorter training time. Conversely, the sigmoid demanded more
extended training epochs and mathematical modeling of the
circuit implemented as a custom activation function.

The training process was carried out offline using the Py-
Torch library. Although online training is feasible, it merits a
separate, comprehensive discussion to thoroughly examine its
complexities. Following training, the weights of both networks
were mapped and fine-tuned to accommodate the hardware.

Challenges were encountered during the offline training
process. In addition to modeling the activation function, the
exponential function preceding the multiplication step had
to be accounted for. This was achieved by multiplying the
weights in each layer to exceed the trained value, thereby
allowing the exponential attenuation by source voltage to yield
a correctly weighted output. The transistors utilized in the
VMM also required calibration during programming to main-
tain accuracy across a range of currents. For further details on
FG programming, see [6]. Notably, the exponential functions
inherent in sigmoid and softmax activation functions, typically
computationally expensive in digital implementations, are es-
sentially cost-free in analog circuits. This efficiency is further
augmented by the system’s programmability, enabling it to
address mismatch and designer intent.

Fig. 4 displays the fully integrated networks and their
resulting classifications. The Sigmoid network encountered
difficulties in generating the correct boundary wall properly.
In contrast, the ReLU network successfully replicated the
encapsulating shape of the digital implementation. The power
consumption of the sigmoid network amounted to 20µW,
while that of the ReLU network reached 80µW.

V. CONCLUSION

This work has delved into the utilization of floating gate
FETs as primitives for subthreshold computation, highlight-
ing their potential for constructing neural network activation
functions. Furthermore, it demonstrated the implementation
of two integrated networks by solving the concentric circles
classification problem end-to-end using analog circuits. This
exploration underscores the significant energy efficiency gains
that can be achieved by maintaining an end-to-end analog
signal chain, paving the way for future advancements in neural
network design and the broader field of analog computation.
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