
Analog High-Level Synthesis for Field
Programmable Analog Arrays

Luke Hanks, Cullen Lonergan, Karsten Richardson, Jennifer Hasler, Pranav Mathews, Afolabi Ige
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia, USA

Abstract—In this paper, we describe our effort to extend the
development of a standard framework for analog computing
through further developing and integrating an existing high level
synthesis (HLS) tool for analog system design. These Python
and Scilab based tools allow designers to design and implement
reconfigurable systems on field-programmable analog arrays
(FPAA). In doing this, we can provide a way to have the same
ease of development that digital integrated circuits (ICs) have
with the field-programmable gate-array (FPGA). We describe the
importance of analog computing, the state of the old tool flow, our
contributions to upgrading the tool flow, and our demonstration
of the working tools.

Index Terms—Field-Programmable Analog Array (FPAA),
Analog Tools, Analog Synthesis,

I. ANALOG COMPUTING AND HIGH-LEVEL SYNTHESIS

In the traditional computing space, there are two broad
categories of computing devices: digital and analog. Digi-
tal computing operates with discrete information and logic.
Analog computers use continuous and real-valued mechanical
and electrical phenomena (i.e. voltages, currents, etc.) to
perform real-time computations. Although analog computing
arose first, the development of the transistor led to digital
largely dominating due to scalability, cost-effectiveness, and
programmability. Widespread adoption of digital systems led
to the development of a robust ecosystem that supports digital
computing: nearly all programming languages, CAD tools,
EDA tools, and other supporting hardware and software efforts
are targeted specifically for digital systems. Contrastingly,
because analog computing was largely ignored in favor of
digital systems, it lacks this standardized framework. For most
of computing history, this has not been a significant concern.

However, as the demand for computing power continues
to rapidly increase, there has been a resurgence in research
efforts and application development in analog computing.
Analog computing inherently uses lower power than digital,
and certain operations are much more efficient than digital
implementations [1]. In particular, hardware implementations
of machine learning and AI systems have been demonstrated
to have superior power and computational efficiency [2]. These
benefits have large implications on the direction computing is
taking in general.

To be able to take advantage of these benefits and increase
accessibility to analog systems, analog computing necessarily
needs a supporting framework of tools and platforms compa-
rable to that of digital. Addressing this need is the purpose

Power Efficiency Scaling

100 MMAC(/s)/W

10 MMAC(/s)/W

1 MMAC(/s)/mW

10 MMAC(/s)/mW

100 MMAC(/s)/mW

1 MMAC(/s)/uW

10 MMAC(/s)/uW

100 MMAC(/s)/uW

1st DSPs (70's-80's)

Speak-and-Spell
to smartphones

Energy efficiency wall 
(32-bit inputs)

smartphones to
analog computing

Typical Analog VMM

x1000
improvement!

x1000
improvement!

D
ig

ita
l

A
na

lo
g

Toolchains and Ecosystems
Digital

FPGA Programming

Layout Synthesis

Analog

Other FPAA
tools ??

Synthesis for non-
programmable analog

This work

Py2.7, Ubuntu 12 VM 

Text flow, GUI flow 

Unified! Py3.10, Ubuntu 22, 

Text + GUI flow, etc 

Fig. 1. The power and area efficiency gains of the analog domain motivate the
need for analog computing applications. This figure highlights the disparity
in ecosystems between the two computing paradigms, and shows how this
work contributes to closing the gap.

of this research: to further the effort to create a standardized
framework for analog computing. In particular, we focus our
efforts on extending a high-level synthesis (HLS) hardware
design tool for Field-Programmable Analog Array (FPAA) [4]
and application specific integrated circuit (ASIC) applications
[3].

II. FIELD PROGRAMMABLE ANALOG ARRAYS

Traditional analog circuit development is a slow process,
requiring a multitude of steps from design to testing and
verification for each new design or specification. The behavior
of analog circuits is much more sensitive to process and design
parameters than their digital counterparts, which contributes to
these long design times.



Verilog to
 Blif

Schematic
to Verilog

GUI

Text Resource
Router

Py to 
Verilog

Verilog to
Blif

FG
Annotation

Programming
Routines

Supporting
Vector Matrix

Files

Added Contribution

Custom Python Library/
XCOS GUI

Compilers
User Input (.py, .xcos)

Field Programmable Analog Array design synthesis

Application Specific Integrated Chip design synthesis GDSII

switchlist

Fig. 2. Top figure: Overview of the compilation flow from user inputs to FPAA and ASIC syntehesis Bottom Figure: Detailed compilation flow illustrating
added contribution

VM Upgrade

OLD NEW

Scilab 5.4

Ubuntu 12

Scilab 6

Ubuntu 22

Resource Router +
Floating Gate
Annotation

Supplementary File
Generation

Programming Routine Remote system Unified Flow (Python
3.10)

genswcs (Python 2.7) genswcs (Python 3.10)

Make Prog File (scilab)
Assembly (610 LOC)

Make Program File
Assembly (Python 3.10)

sci2blif (Scilab)
rasp30.py (Python 2.7)
rasp30a.py (Python 2.7)

blif2swcs (Python 3.10)

CONTRIBUTION

Fig. 3. Outline of new contributions to the toolset

FPAAs aim to address this problem by allowing rapid
prototyping of analog circuits similarly to digital field pro-
grammable gate arrays (FPGAs) [5]. The FPAA consists of
a fabric of computational analog blocks (CABs) and com-
putational logic blocks (CLBs). The CLBs provide similar
programmability to that of blocks on an FPGA while CABs en-
able analog programmability. Central to the programmability
of the CABs on the FPAA is the floating-gate transistor [6].
These devices eliminate a large weakness of analog design:
device mismatch. With digital computing, the operations are

abstracted to binary logic, so variations in individual device
parameters after fabrication does not translate to a large
impact on performance. However, because analog computing
is not abstracted, mismatch in device threshold voltage, size,
and other parameters significantly impacts performance. With
floating-gate transistors, through tunnelling and hot-electron
injection, a static charge can be programmed on the gate of
the transistor that can effectively eliminate the effects of device
mismatch [6]. However, not only can we eliminate mismatch,
we can program these devices to change the static behavior of
the transistors, effectively meaning we can control the behavior
of circuits implemented on the FPAA.

This charge programming, along with routing specific de-
vices together, is the method through which analog pro-
grammability and reconfigurability is achieved on the FPAA
[7]. This process is broadly what the HLS tool performs
when programming circuits, and the scripts and programs that
achieve this are the focus of the content of the subsequent
sections.

III. UPGRADES AND ADDITIONS TO THE TOOL-FLOW

To begin discussing our work with the tools, we give an
overview of the state of the tools before our work. There are
two tool flows present on the old system: the Recongfigurable
Analog Signal Processing (RASP) Tools, and the Analog
Synthesis for High Level Systems (ASHES).

A. Upgrades to the Existing RASP Tools

The RASP tools are a GUI based system that allow the
user to design circuits graphically with a drag and drop
environment called XCOS, compile them, and program them
to an FPAA all within a Scilab environment. At a high
level, this flow is described in Figure 2. A Scilab script



10 2 10 3 10 4

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

C
ha

nn
el

 1
 M

ag
ni

tu
de

 (X
)

BPF Plots

83
H

z

24
0H

z

39
8H

z

11
20

H
z

30
08

H
z

79
00

H
z

19
00

0H
z

BPF

FG TA

TA

Fig. 4. Left: Schematic of C4 and FGs. Right: Plot of Bandpass filters with exponentially spaced center frequencies.

TABLE I
FILTER BANK BIAS CURRENTS

fcenter (Hz) OTA Ibias FG OTA Ibias
30 .4nA 4nA
75 .85nA 10nA
189 1nA 5nA
476 1.5nA 8nA
1197 2.5nA 25nA
3008 11nA 60nA
7560 30nA 150nA
19000 94nA 474nA

called sci2blif.sce converts the XCOS representation of the
circuit to a .blif netlist file and generates a .pads file, both
describing the circuit structure. These are compatible with
a CAD tool called Versatile Place and Route (VPR) that is
typically for FPGA applications but has been repurposed here
for the FPAA. Given an architecture file describing the FPAA,
the netlist, and the pads file, VPR determines how to route
the FPAA resources to create the circuit. It outputs .place,
.route, and .net files. sci2blif.sce then calls a python script
genswcs.py that uses the output of VPR to create a switch
list that determines what specific switches are used on the
FPAA and how they are programmed. Finally, a Scilab script
MakeProgramlist CompileAssembly.sce uses the switch list to
create files that interact directly with the microprocessor on the
FPAA in assembly to program the circuit. This compilation
flow is “Python-wrapped” using Python 2.7.

To begin, the base virtual machine (VM) that hosts all the
tools was updated. The VM was initially built on an older
deprecated version of Ubuntu (12.04) and was updated to a
secure modern LTS version (Ubuntu 22) in an entirely new
virtual machine. This update allows for a more secure system
due to modern support by Linux, and documentation of the
steps taken to update versions allows for easier integration of
Ubuntu updates in the future. Scilab, an open-source Matlab
alternative that the tools are built around, also needed to be
updated when moving VMs. The Scilab version was updated
from Scilab 5 to Scilab 6, and syntax changes that differed
between the two versions were updated in the code.

After upgrading the VM and Scilab versions and Scilab
scripts, the Python 2.7 components of the compilation flow
were updated to Python 3.10. This involved updating the
genswcs.py, rasp30.py, rasp30a.py files. The rasp30.py and
rasp30a.py files are scripts that contain architectural infor-
mation about the type of FPAA board being used, and this
information is used when genswcs.py creates the switch list
of the circuit. With these changes, the RASP tools were
successfully updated to modern software distributions and
programming practices.

B. Extending the Functionality of ASHES

The ASHES tools are a text-based tool flow rather than a
GUI based flow, and they are implemented entirely in python.
This tool works in conjunction with the RASP tools, but
it allows designers a simpler method to design large scale



systems hierarchically, increasing versatility. Further, these
tools also have the functionality to compile designed circuits
down to GDSII files for application specific integrated circuits
(ASIC) fabrication. However, our focus is on the FPAA flow.
For the FPAA flow, ASHES functionality was implemented
up to the generation of the .blif netlist describing the circuit.
Thus, the goal of our work was to implement the functionality
described in the sci2blif.sce file including creating scripts to
call VPR, generate the switchlist, create the compilation files
to interact with the microprocessor, and program the circuit
onto the FPAA.

The text-based tools were built on a Python 3 framework,
eliminating the need for Scilab scripts entirely. The existing
text-based toolchain compiled the text description down to the
blif file format. Given a python input describing the circuit, the
file new converter.py converts the input to verilog description
of the circuit. The file verilog2blif.py then converts the verilog
file to a .blif file.

To extend this functionality to be able to program circuits
onto the FPAA, scripts that received the .blif file and per-
formed the processing through programming were written in
Python 3. The file blif2swcs.py was created that encapsulated
a majority of the functionality contained in sci2blif.sce from
the RASP tools. Given a .blif input, this file performed
the necessary resource routing through VPR and floating
gate annotation steps to generate a switch list. To facilitate
integrating the two tool flows, we hierarchically call the
same genswcs.py and incorporate the architectural function
rasp30.py and rasp30a.py.

The completion of the text-based toolchain required that the
tool be capable of programming the FPAA directly without the
use of the graphical Scilab tools. The assembly compilation
of the switchlist requires a multitude of helper files to be gen-
erated inside a hidden directory upon each compilation. The
implementation of this generation was started with promising
results. MakeProgramlilst CompileAssembly.py is a compi-
lation script for the text-based tools that generates these
necessary helper files for the final compilation. This file has
been shown to correctly generate most of the required files, but
these files have not yet been verified. The programming step
using a script labeled program fpaa.py has been demonstrated
to have full functionality using the files generated from the
GUI version of the programming interface.

IV. TOOLCHAIN VERIFICATION

With the tool upgrades and additions successfully complete,
we need to demonstrate and verify the functionality of the new
tool set. We chose to design, implement, and test a frequency
decomposition system on the FPAA. This system can be
viewed as an analog version of the fast fourier transform (FFT)
algorithm that digital systems use. Unlike the FFT, this system
performs decomposition on the input signal directly and in real
time. To implement this, we designed an exponentially spaced
filter bank of bandpass filters using the capacitively-coupled-
current-conveyor (C4) topology pictured in Figure 4 labelled
C4 BPF.

The C4 consists of one regular operational trans-
conductance amplifier (OTA), one FG OTA, and an input and
feedback capacitor. The OTA and FG OTA transistor level
schematics are pictured in Figure 4, labelled TA and FG TA
respectively. Each of these OTAs has a bias current that is
programmable through the tail FG PMOS highlighted in green
on the schematics, and through tuning each of these bias
currents we are able to alter both the center frequency and
the Q factor of the bandpass response. Further, the FG OTA
has FG inputs on its differential pair highlighted in green on
the schematic. These allow for the elimination of effects of
mismatch on the circuit.

To create the bank, we tuned eight filters with exponentially
spaced center frequencies. We chose frequencies that are
within the human hearing range of 20Hz to 20kHz. By tuning
these filters with a high Q value, and thus a large peak
in the frequency response, the filters effectively select the
frequency components of the input signal that are present. The
current values and associated center frequencies are listed in
Table I. These results were obtained entirely through the new
tools, particularly the RASP tools, and demonstrate the full
functionality of the toolchain.

V. CONCLUSION

This research consists of a two phase project with the goal
of upgrading, integrating, and demonstrating an existing high-
level synthesis tool flow for analog design. This tool, being the
first of its kind, was in the nascent stages of development, and
through our work we were able to make significant progress
towards making a complete, robust design tool.

REFERENCES

[1] J. Hasler, ”The Rise of SoC FPAA Devices,” 2022 IEEE Custom
Integrated Circuits Conference (CICC), Newport Beach, CA, USA, 2022,
pp. 1-8, doi: 10.1109/CICC53496.2022.9772732.

[2] J. Hasler, ”Opportunities in physical computing driven by ana-
log realization,” 2016 IEEE International Conference on Reboot-
ing Computing (ICRC), San Diego, CA, USA, 2016, pp. 1-8, doi:
10.1109/ICRC.2016.7738680.

[3] Ige, Afolabi, Linhao Yang, Hang Yang, Jennifer Hasler, and Cong Hao.
2023. ”Analog System High-Level Synthesis for Energy-Efficient Recon-
figurable Computing” Journal of Low Power Electronics and Applications
13, no. 4: 58. https://doi.org/10.3390/jlpea13040058

[4] Kim, S., Shah, S., Wunderlich, R. et al. CAD synthesis tools for
floating-gate SoC FPAAs. Des Autom Embed Syst 25, 161–176 (2021).
https://doi.org/10.1007/s10617-021-09247-9

[5] J. Hasler, “Large-Scale Field-Programmable Analog Arrays,” Proceed
ings of the IEEE, Aug. 2020.

[6] P. Hasler, C. Diorio, B. Minch, and C. Mead, “Single Transistor Learning
Synapses,” in Advances in Neural Information Processing Systems, 1994.

[7] M. Collins, J. Hasler, and S. George, “An Open-Source Tool Set Enabling
Analog-Digital-Software Co-Design,” Journal of Low Power Electronics
and Applications, Feb. 2016


