

Efficient Implementation of a Fully Analog Neural Network on a Reconfigurable Platform Afolabi Ige, Jennifer Hasler. Georgia Institute of Technology

Analog ML & FPAAs

Analog v Digital Computing

- Interesting points from history
 - Compute in Memory
 - Analog ML: XOR in a single layer
 - Field Programmable Analog Arrays

Figure 1: Circuit diagram of the single - transistor synapse array. Each transistor has a floating gate capacitively cou-

Hasler et al. Single transistor learning synapse with long term storage. 1995

S, Ramakrishnan et al. A compact programmable analog classifier using a vmm + wta network. 2013.

S. Kim, J. Hasler, S. George. Integrated Floating-Gate Programming Environment for System-Level ICs. 2015.

Overview

- Neural Networks are Matrices and Activations
- Data converter bottleneck in CIM.
- Fully Analog Networks break through.

≥12b

precision

crossbar

Fully analog

activation

signal chain

Analog

Feature

Extractor

work

Analog

classification/

regression

The Crossbar

- Floating Gates make great cross bars!
 - High precision
 - -10-year retention, no refresh
 - Established Fab Process
- Source v Gate Input
 - Source is an exponential reduction of weight. Better selectivity.
 - Gate is an exponential increase of input. FETs harder to shut off.

	Precision	Drift ?	Current draw	Fabrication Maturity
ReRAM [Wan, w. Nature '22]	~4 – 5 bits	Yes	mA	No
Digital	4/16 bits	No	mA	Yes
Phase Change memory [Gallo, M. J Phys. D Appl Phys '22]	~ 3 bits	Yes	uA	No
Floating Gates [Sihwan, K. TVLSI '16]	13 bits	No	pA to nA	Yes

FG Calibration

- Fabrication mismatch
- Program device mismatch
- Floating Gate Calibration

A ₁	B ₂	B3	A ₄
B ₁	A ₂	A ₃	В4

Techniques for combatting device variation

Analog Activations

- Activation functions need a programmable bottom.
- The Sigmoid and Rectified Linear Unit are well studied non-linear functions.
- Both handle differential weight schemes.

Analog Classification

• The softmax function normalizes inputs similar to the winner-take-all.

$$\sigma(x) = \frac{e^x}{\sum_{i=1}^k e^{x_i}}$$

- The WTA was modified for density and programmability on the FPAA.
- Last layer of the network measured on chip

Original Lazzaro Winner-Take-All (WTA) Circuit. [J, Lazzaro et al. 1989]

Winner-Take-All as a Softmax

Modified FPAA WTA Circuit

Training & Mapping

- Model analog activation
- Train digitally
- Scale weights to hardware
- Finetune for accuracy

FPAA Neural Network Structure

Analog Neural Network

• Task:

 Solving the concentric circles problem [1]

• Architecture:

– 2-Layer NN

Sigmoid	1.0- 0.8- 0.6- 0.2- 0.2-
	0.0 - 0.0 0.2 0.4 0.6 0.8 1.0 Normalized feature x1

	Accuracy	Power	
Sigmoid	84.8 %	20 μW	
ReLU	94 %	80 μW	

Digital

[1] Visualize @ TF Playground: https://playground.tensorflow.org/

Questions?

