
Automated Synthesis for Analog Computing
Systems

Afolabi Ige

Abstract—This project proposes a Floating Gate (FG)
architecture-aware synthesis tool that generates GDSII layout
from analog standard cells and a netlist description. The out-
comes of the work will be an open source tool that enables rapid
creation of Application Specific Integrated Chips (ASIC) layout,
a PDK conversion utility and FG standard cells across multiple
process nodes. This work will target the conferences TCAD and
DAC for publishing the results.

I. THE ARGUMENT FOR ANALOG SYNTHESIS

Digital circuits have historically benefited from standard cell
abstraction and the design automation it enables. Traditional
analog circuit designs have avoided adopting this technique
due daunting task of optimizing a myriad of design variables
with application specific tradeoffs. However, the use of floating
gate technology allows for post fabrication tuning of said
variables which in turn allows for abstraction similar to that
of a typical digital flow. The field of analog IC automation
is currently coinciding with the explosion of alternate com-
puting methods especially in the Machine Learning (ML)
age. Adoption of such automation techniques for analog
neuromorphic circuits would introduce the same advantages
to allow designers to keep up with the ever-growing demand
for alternate methods of computing. Floating gates crossbar
structures implementing vector matrix multipliers were one of
the earliest [1] references to the term ”in-memory computing”
and have since been shown as a viable alternative for energy
efficient computing [2], [3].

Other analog synthesis tools [4], [5] attempt to procedurally
generate specific circuit layout blocks as part of a larger sys-
tem. The proposed technique for this current approach (fig. 1)
is to use the floating gate building blocks as primitives to
design a system with primarily analog elements performing the
computation. Digital synthesis tools [6] are rigidly designed to
expect items such as two level supplies, unidirectional signals,
and clock trees instead of FG infrastructure for hot electron
injection and Fowler-Nordheim Tunneling. For these reasons
this project serves to fill the gap in the available open source
tool chains.

Outcomes of this work:
1) 3 Modules which make up the Layout Generator Tool
2) PDK conversion utility
3) Publication submissions to DAC Conference, and TCAD

Journal
Part two of this application discusses building the tool

and the milestones associated with the proposed work. It
also describes integration of the tool with other open source
EDA tools E.g. FPAA Toolchain and Triton Route tool. Part

Fig. 1. The flow shows the process by which a programmable analog circuit
would be synthesized down to transistor level layout. The deliverables of
this project will be the layout generating tool, the pdk conversion utility and
contributions to an open source analog standard cell library

three concerns the synthesis of applications and evaluation
of performance in comparison to hand synthesized layouts as
benchmarks such as a reconfigurable recurrent neural network
for associative memory while also synthesizing new applica-
tions such as a low power spike sorting array.

II. TOOL BUILDING

A. Understanding Island Architecture

To discuss how the tool creates a system, it is important to
understand ”Island Architecture” as seen in fig. 2. This refers
to the logical grouping of similarly functioning standard cells
which are designed to tile next to each other. These analog
circuits are designed to fit within a process specific pitch which
can be placed into the rows of partitioned die area. This is of
importance particularly because all the floating gate specific
items would be placed around each island. This allows the
island block to be treated as a black box with ports that can
be routed to pins by existing open source tools.



Fig. 2. Island Architecture concept highlighting the makeup of individual islands and their corresponding FG architecture.

B. Synthesis Flow

The Python-based tool is to be designed with a modular,
extensible approach in mind. There are 4 modules to discuss:

1) Standard Cell Conversion Utility
2) Netlist to System Parser
3) System to Block placement
4) FG Architecture Implicit from Block placement
The flow of synthesis will follow the order listed above. The

conversion utility would transfer a given layout file between
process nodes. This is helpful to convert standard cells quickly
between processes if need be. It will manipulate the .gds file
to convert corresponding layers between provided layer map
files. New PDKs can be added by specifying the Front End
of Line (FEOL) and Back end of Line (BEOL) layers in a
structured JSON format.

The Netlist-to-System parser will iterate over the provided
netlist to construct system blocks. Its job is to differentiate
islands from one another and represent the location of the
blocks in a 2-Dimensional array to keep track of relative
cell location. An object-oriented programming approach is
preferred here as the cells are simply instances of the core
standard cell library. These object instances will keep track of
properties like port location, metals layers used etc for further
analysis during evaluation.

Next, System-to-Block module will take advantage of this
internal representation to convert the 2D array of cells into
physical locations of the polygons to be placed when the final
.gds is generated. A possible extensible feature for this module
would be to run a design rule check after all blocks have been
placed and report the status to the user.

Finally, based on the blocks sitting at the edge of the system,
gate/drain side switches and decoders should be placed around
the edges to complete the island structure. The final size will
be constrained by the area specified by the user. If the block
exceeds the dimensions, the tool will ask the user to resize
their chosen island size E.g. reduce number of channels, shrink
the vector matrix multiply etc.

C. Timeline

Fig. 3. Estimated timeline for individual module creation and opportunities for
discussion of results. Each phase time frame also includes unit and integration
test writing period.

The timeline in fig. 3 shows the allotted space given to the
creation of each of the modules. Additionally, it highlights
conferences that are being targeted for publication. Specifically
the Design Automation Conference (DAC) deadline is mid-
November while the Transaction on Computer-Aided Design
Journal accepts submissions year-round on a monthly basis.

D. Open Source Integration

A detriment of open source tools in comparison to com-
mercial counterparts is ensuring that they are able to integrate



Fig. 4. Larger Flow for end-to-end Synthesis. The proposed tool would fit into the flow as described by task B above.

Fig. 5. (a) Shows the custom synthesized layout of a Hopfield network. This
can be programmed as an associative memory that stores data in the network
(b) Shows custom synthesized layout of an Arbitrary Waveform Generator.
This generates custom waveforms by combining stored values in the non-
volatile storage elements. (c) Simple spike sorting architecture using floating
gate amplifiers feeding a vector matrix multiplier with programmed templates
at each row to sort real time neural spike inputs

with other software to form a symbiotic ecosystem. This tool
is designed with two major integration points in mind. The
first being the higher level interface to the netlist generator
tool and the second being the output provided to the pin
router for detailed frame routing. As seen in fig. 4, The tool
chain for Field Programmable Analog Arrays (FPAA) share

a high level description with this tool. This means that the
same language used for rapid prototyping can be used for
specification of custom ICs. Above that tool chain is the high
level programming language that can be used to target our
custom hardware for ML models. This side of the flow is
in collaboration with Dr Hao’s Sharc Lab. The second point
of integration would be connecting the tool to TritonRoute
[7] to handle routing to pins on a given frame. TritonRoute
was selected for its established role as part of the OpenRoad
synthesis flow [6].

III. SYNTHESIS AND EVALUATION

Once the tool has been developed, it is important to be able
to assess its performance. To do so we will compare it to
custom synthesized layouts that have been taped out. It will
be compared on the following metrics:

1) Footprint (mm2)
2) Placement Utilization (%)
3) Metal Layer Usage
4) Power Estimation
The custom synthesized layouts that will be compared

against are seen in fig. 5 (a) and (b). (a) is a Hopfield network
which is a fully connected recurrent neural network that sets up
the output of each node and the weights between them as a dy-
namical system. (b) is an Arbitrary Waveform Generator which
produces custom waveforms by combining stored values in the
non-volatile storage elements. Transmission gates controlled
by a scan chain then allow for readout of these values in quick
succession. Reproducing these systems and comparing them
based on the metrics listed above will demonstrate the quality
of the tool.

Finally, the tool should be able to generate new systems
based on a provided description. To evaluate this, a spike
sorting architecture is proposed in (c). It uses a FG Operational
Transconductance Amplifier (OTA) for controlled gain of



neural input signals. These are then sorted by stored templates
in the VMM. The ability to create this system will show
the usefulness of the tool in generating new systems. For
comparison of its synthesis ability, other tools will be made to
attempt generation of the same systems. Tools for comparison
will be Align [5] and OpenLane [6].

IV. CONCLUSION

Automation of analog system synthesis would allow for
quicker design cycles and much larger FG system projects
executed by a few designers. Building all modules of this tool
and connecting them to existing open source tools will not only
accomplish the synthesis goals as outlined but will provide the
opportunity for papers based on its results and contribute back
to the open source community at large.

REFERENCES

[1] M. Kucic, P. Hasler, J. Dugger, and D. Anderson, “Programmable and
adaptive analog filters using arrays of floating-gate circuits,” in Proceed-
ings 2001 Conference on Advanced Research in VLSI. ARVLSI 2001,
2001, pp. 148–162.

[2] R. Chawla, A. Bandyopadhyay, V. Srinivasan, and P. Hasler, “A 531
nw/mhz, 128/spl times/32 current-mode programmable analog vector-
matrix multiplier with over two decades of linearity,” in Proceedings
of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat.
No.04CH37571), 2004, pp. 651–654.

[3] S. George, J. Hasler, S. Koziol, S. Nease, and S. Ramakrishnan, “Low
power dendritic computation for wordspotting,” Journal of Low Power
Electronics and Applications, vol. 3, no. 2, pp. 73–98, May 2013.
[Online]. Available: https://doi.org/10.3390/jlpea3020073

[4] H. Chen, M. Liu, B. Xu, K. Zhu, X. Tang, S. Li, Y. Lin, N. Sun, and
D. Z. Pan, “Magical: An open- source fully automated analog ic layout
system from netlist to gdsii,” vol. 38, no. 2, 2021, pp. 19–26.

[5] K. Kunal, M. Madhusudan, A. K. Sharma, W. Xu, S. M. Burns, R. Har-
jani, J. Hu, D. A. Kirkpatrick, and S. S. Sapatnekar, “Invited: Align –
open-source analog layout automation from the ground up,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–4.

[6] M. Shalan and T. Edwards, “Building openlane: A 130nm openroad-based
tapeout- proven flow : Invited paper,” in 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD), 2020, pp. 1–6.

[7] A. B. Kahng, L. Wang, and B. Xu, “Tritonroute: An initial detailed
router for advanced vlsi technologies,” in 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018, pp. 1–8.

https://doi.org/10.3390/jlpea3020073

	The Argument for Analog Synthesis
	Tool Building
	Understanding Island Architecture
	Synthesis Flow
	Timeline
	Open Source Integration

	Synthesis and Evaluation
	Conclusion
	References

